I wouldn’t, I’d just live there. Get to know the people and culture, get married, grow to old age and die. Just like almost everyone there, and most people in any country. I’d survive just like I’d survive in any other country: go to work every day to get income needed to eat, repeat the process ad infinitum until my body withers away from old age.
- 0 Posts
- 28 Comments
Ah yes, crying about “privilege” while you’re here demanding that people shouldn’t speak out against a literal modern day holocaust at the only time when they have the political power to make some sort of difference. Yeah, it’s totally those people who are “privileged” and not your white pasty ass who doesn’t have to worry about their extended family being slaughtered.
Good. That’s when Democrats should be criticized the most, because that is the only time you have the power to exercise any leverage over them. Why would you refuse to criticize them when you actually have a tiny bit of leverage and wait until you have no power at all and your criticism is completely irrelevant and will be ignored? That is just someone who wants to complain but doesn’t actually want anything to change.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•It has been two years since the release of ChatGPT. How has it impacted your work or personal life? What changes have you experienced, and do you see it as a positive or negative influence11·7 个月前We don’t know what it is. We don’t know how it works. That is why
If you cannot tell me what you are even talking about then you cannot say “we don’t know how it works,” because you have not defined what “it” even is. It would be like saying we don’t know how florgleblorp works. All humans possess florgleblorp and we won’t be able to create AGI until we figure out florgleblorp, then I ask wtf is florgleblorp and you tell me “I can’t tell you because we’re still trying to figure out what it is.”
You’re completely correct. But you’ve gone on a very long rant to largely agree with the person you’re arguing against.
If you agree with me why do you disagree with me?
Consciousness is poorly defined and a “buzzword” largely because we don’t have a fucking clue where it comes from, how it operates, and how it grows.
You cannot say we do not know where it comes from if “it” does not refer to anything because you have not defined it! There is no “it” here, “it” is a placeholder for something you have not actually defined and has no meaning. You cannot say we don’t know how “it” operates or how “it” grows when “it” doesn’t refer to anything.
When or if we ever define that properly
No, that is your first step, you have to define it properly to make any claims about it, or else all your claims are meaningless. You are arguing about the nature of florgleblorp but then cannot tell me what florgleblorp is, so it is meaningless.
This is why “consciousness” is interchangeable with vague words like “soul.” They cannot be concretely defined in a way where we can actually look at what they are, so they’re largely irrelevant. When we talk about more concrete things like intelligence, problem-solving capabilities, self-reflection, etc, we can at least come to some loose agreement of what that looks like and can begin to have a conversation of what tests might actually look like and how we might quantify it, and it is these concrete things which have thus been the basis of study and research and we’ve been gradually increasing our understanding of intelligent systems as shown with the explosion of AI, albeit it still has miles to go.
However, when we talk about “consciousness,” it is just meaningless and plays no role in any of the progress actually being made, because nobody can actually give even the loosest iota of a hint of what it might possibly look like. It’s not defined, so it’s not meaningful. You have to at least specify what you are even talking about for us to even begin to study it. We don’t have to know the entire inner workings of a frog to be able to begin a study on frogs, but we damn well need to be able to identify something as a frog prior to studying it, or else we would have no idea that the thing we are studying is actually a frog.
You cannot study anything without being able to identify it, which requires defining it at least concretely enough that we can agree if it is there or not, and that the thing we are studying is actually the thing we aim to study. We should I believe your florgleblorp, sorry, I mean “consciousness” you speak of, even exists if you cannot even tell me how to identify it? It would be like if someone insisted there is a florgleblorp hiding in my room. Well, I cannot distinguish between a room with or without a florgleblorp, so by Occam’s razor I opt to disbelieve in its existence. Similarly, if you cannot tell me how to distinguish between something that possesses this “consciousness” and something that does not, how to actually identify it in reality, then by Occam’s razor I opt to disbelieve in its existence.
It is entirely backwards and spiritualist thinking that is popularized by all the mystics to insist that we need to study something they cannot even specify what it is first in order to figure out what it is later. That is the complete reversal of how anything works and is routinely used by charlatans to justify pseudoscientific “research.” You have to specify what it is being talked about first.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•It has been two years since the release of ChatGPT. How has it impacted your work or personal life? What changes have you experienced, and do you see it as a positive or negative influence25·7 个月前we need to figure out what consciousness is
Nah, “consciousness” is just a buzzword with no concrete meaning. The path to AGI has no relevance to it at all. Even if we develop a machine just as intelligent as human beings, maybe even moreso, that can solve any arbitrary problem just as efficiently, mystics will still be arguing over whether or not it has “consciousness.”
Edit: You can downvote if you want, but I notice none of you have any actual response to it, because you ultimately know it is correct. Keep downvoting, but not a single one of you will actually reply and tell us me how we could concretely distinguish between something that is “conscious” and something that isn’t.
Even if we construct a robot that fully can replicate all behaviors of a human, you will still be there debating over whether or not is “conscious” because you have not actually given it a concrete meaning so that we can identify if something actually has it or not. It’s just a placeholder for vague mysticism, like “spirit” or “soul.”
I recall a talk from Daniel Dennett where he discussed an old popular movement called the “vitalists.” The vitalists used “life” in a very vague meaningless way as well, they would insist that even if understand how living things work mechanically and could reproduce it, it would still not be considered “alive” because we don’t understand the “vital spark” that actually makes it “alive.” It would just be an imitation of a living thing without the vital spark.
The vitalists refused to ever concretely define what the vital spark even was, it was just a placeholder for something vague and mysterious. As we understood more about how life works, vitalists where taken less and less serious, until eventually becoming largely fringe. People who talk about “consciousness” are also going to become fringe as we continue to understand neuroscience and intelligence, if scientific progress continues, that is. Although this will be a very long-term process, maybe taking centuries.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•What's the most immersive video game that you've played?5·7 个月前When I was younger I would play X-Wing Alliance on my PC with an actual like pilot joystick controller with all the lights turned off. That game is a Star Wars game where you fly space ships and fight other space ships, but it’s all in first-person, so you see out of the pilot cockpit.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•What's the most immersive video game that you've played?3·7 个月前The space mechanics was definitely one of the great things about that game, in my opinion. Most space games when you land you just press a button and it plays an animation. Having to land manually with a landing camera is very satisfying. When you crash and parts of your ship break and you have to float outside to fix it, that was also very fun. I feel like a lot of space games are a bit lazy about the actual space mechanics, this game did it very well.
bunchberry@lemmy.worldto Technology@lemmy.world•No, the Chinese Have Not Broken Modern Encryption Systems with a Quantum Computer - Schneier on SecurityEnglish2·8 个月前Yep. Technically you could in principle use Grover’s algorithm to speed up cracking a symmetrical cipher, but the size typically used for the keys is too large so even though it’d technically be faster it still not be possible in practice. Even with asymmetrical ciphers we already have replacements that are quantum safe, although most companies have not implemented them yet.
bunchberry@lemmy.worldto Technology@lemmy.world•No, the Chinese Have Not Broken Modern Encryption Systems with a Quantum Computer - Schneier on SecurityEnglish7·8 个月前Honestly, the random number generation on quantum computers is practically useless. Speeds will not get anywhere near as close to a pseudorandom number generator, and there are very simple ones you can implement that are blazing fast, far faster than any quantum computer will spit out, and produce numbers that are widely considered in the industry to be cryptographically secure. You can use AES for example as a PRNG and most modern CPUs like x86 processor have hardware-level AES implementation. This is why modern computers allow you to encrypt your drive, because you can have like a file that is a terabyte big that is encrypted but your CPU can decrypt it as fast as it takes for the window to pop up after you double-click it.
While PRNG does require an entropy pool, the entropy pool does not need to be large, you can spit out terabytes of cryptographically secure pseudorandom numbers on a fraction of a kilobyte of entropy data, and again, most modern CPUs actually include instructions to grab this entropy data, such as Intel’s CPUs have an RDSEED instruction which let you grab thermal noise from the CPU. In order to avoid someone discovering a potential exploit, most modern OSes will mix into this pool other sources as well, like fluctuations in fan voltage.
Indeed, used to with Linux, you had a separate way to read random numbers directly from the entropy pool and another way to read pseudorandom numbers, those being /dev/random and /dev/urandom. If you read from the entropy pool, if it ran out, the program would freeze until it could collect more, so some old Linux programs you would see the program freeze until you did things like move your mouse around.
But you don’t see this anymore because generating enormous amounts of cryptographysically secure random nubmers is so easy with modern algorithms that modern Linux just collects a little bit of entropy at boot and it uses that to generate all pseudorandom numbers after, and just got rid of needing to read it directly, both /dev/random and /dev/urandom now just internally in the OS have the same behavior. Any time your PC needs a random number it just pulls from the pseudorandom number generator that was configured at boot, and you have just from the short window of collecting entropy data at boot the ability to generate sufficient pseudorandom numbers basically forever, and these are the numbers used for any cryptographic application you may choose to run.
The point of all this is to just say random number generation is genuinely a solved problem, people don’t get just how easy it is to basically produce practically infinite cryptographically secure pseudorandom numbers. While on paper quantum computers are “more secure” because their random numbers would be truly random, in practice you literally would never notice a difference. If you gave two PhD mathematicians or statisticians the same message, one encrypted using a quantum random number generator and one encrypted with a PRNG like AES or ChaCha20, and asked them to decipher them, they would not be able to decipher either. In fact, I doubt they would even be able to identify which one was even encoded using the quantum random number generator. A string of random numbers looks just as “random” to any random number test suite whether or not it came from a QRNG or a high-quality PRNG (usually called CSPRNG).
I do think at least on paper quantum computers could be a big deal if the engineering challenge can ever be overcome, but quantum cryptography such as “the quantum internet” are largely a scam. All the cryptographic aspects of quantum computers are practically the same, if not worse, than traditional cryptography, with only theoretical benefits that are technically there on paper but nobody would ever notice in practice.
A lot of people who present quantum mechanics to a laymen audience seem to intentionally present it to be as confusing as possible because they like the “mystery” behind it. Yet, it is also easy to present it in a trivially simple and boring way that is easy to understand.
Here, I will tell you a simple framework that is just 3 rules and if you keep them in mind then literally everything in quantum mechanics makes sense and follows quite simply.
- Quantum mechanics is a probabilistic theory where, unlike classical probability theory, the probabilities of events can be complex-valued. For example, it is meaningful in quantum mechanics for an event to have something like a -70.7i% chance of occurring.
- The physical interpretation of complex-valued probabilities is that the further the probability is from zero, the more likely it is. For example, an event with a -70.7i% probability of occurring is more likely than one with a 50% probability of occurring because it is further from zero. (You can convert quantum probabilities to classical just by computing their square magnitudes, which is known as the Born rule.)
- If two events or more become statistically correlated with one another (this is known as “entanglement”) the rules of quantum mechanics disallows you from assigning quantum probabilities to the individual systems taken separately. You can only assign the quantum probabilities to the two events or more taken together. (The only way to recover the individual probabilities is to do something called a partial trace to compute the reduced density matrix.)
If you keep those three principles in mind, then everything in quantum mechanics follows directly, every “paradox” is resolved, there is no confusion about anything.
For example, why is it that people say quantum mechanics is fundamentally random? Well, because if the universe is deterministic, then all outcomes have either a 0% or 100% probability, and all other probabilities are simply due to ignorance (what is called “epistemic”). Notice how 0% and 100% have no negative or imaginary terms. They thus could not give rise to quantum effects.
These quantum effects are interference effects. You see, if probabilities are only between 0% and 100% then they can only be cumulative. However, if they can be negative, then the probabilities of events can cancel each other out and you get no outcome at all. This is called destructive interference and is unique to quantum mechanics. Interference effects like this could not be observed in a deterministic universe because, in reality, no event could have a negative chance of occurring (because, again, in a deterministic universe, the only possible probabilities are 0% or 100%).
If we look at the double-slit experiment, people then ask why does the interference pattern seem to go away when you measure which path the photon took. Well, if you keep this in mind, it’s simple. There’s two reasons actually and it depends upon perspective.
If you are the person conducting the experiment, when you measure the photon, it’s impossible to measure half a photon. It’s either there or it’s not, so 0% or 100%. You thus force it into a definite state, which again, these are deterministic probabilities (no negative or imaginary terms), and thus it loses its ability to interfere with itself.
Now, let’s say you have an outside observer who doesn’t see your measurement results. For him, it’s still probabilistic since he has no idea which path it took. Yet, the whole point of a measuring device is to become statistically correlated with what you are measuring. So if we go to rule #3, the measuring device should be entangled with the particle, and so we cannot apply the quantum probabilities to the particle itself, but only to both the particle and measuring device taken together.
Hence, for the outside observer’s perspective, only the particle and measuring device collectively could exhibit quantum interference. Yet, only the particle passes through the two slits on its own, without the measuring device. Thus, they too would predict it would not interfere with itself.
Just keep these three rules in mind and you basically “get” quantum mechanics. All the other fluff you hear is people attempting to make it sound more mystical than it actually is, such as by interpreting the probability distribution as a literal physical entity, or even going more bonkers and calling it a grand multiverse, and then debating over the nature of this entity they entirely made up.
It’s literally just statistics with some slightly different rules.
bunchberry@lemmy.worldto Technology@lemmy.world•Regarding this picture, where do you think quantum computers lie and why?English2·11 个月前You don’t have to be sorry, that was stupid of me to write that.
bunchberry@lemmy.worldto Technology@lemmy.world•Regarding this picture, where do you think quantum computers lie and why?English1·11 个月前Because the same functionality would be available as a cloud service (like AI now). This reduces costs and the need to carry liquid nitrogen around.
Okay, you are just misrepresenting my argument at this point.
bunchberry@lemmy.worldto Technology@lemmy.world•Regarding this picture, where do you think quantum computers lie and why?English1·11 个月前Why are you isolating a single algorithm? There are tons of them that speed up various aspects of linear algebra and not just that single one, and many improvements to these algorithms since they were first introduced, there are a lot more in the literature than just in the popular consciousness.
The point is not that it will speed up every major calculation, but these are calculations that could be made use of, and there will likely even be more similar algorithms discovered if quantum computers are more commonplace. There is a whole branch of research called quantum machine learning that is centered solely around figuring out how to make use of these algorithms to provide performance benefits for machine learning algorithms.
If they would offer speed benefits, then why wouldn’t you want to have the chip that offers the speed benefits in your phone? Of course, in practical terms, we likely will not have this due to the difficulty and expense of quantum chips, and the fact they currently have to be cooled below to near zero degrees Kelvin. But your argument suggests that if somehow consumers could have access to technology in their phone that would offer performance benefits to their software that they wouldn’t want it.
That just makes no sense to me. The issue is not that quantum computers could not offer performance benefits in theory. The issue is more about whether or not the theory can be implemented in practical engineering terms, as well as a cost-to-performance ratio. The engineering would have to be good enough to both bring the price down and make the performance benefits high enough to make it worth it.
It is the same with GPUs. A GPU can only speed up certain problems, and it would thus be even more inefficient to try and force every calculation through the GPU. You have libraries that only call the GPU when it is needed for certain calculations. This ends up offering major performance benefits and if the price of the GPU is low enough and the performance benefits high enough to match what the consumers want, they will buy it. We also have separate AI chips now as well which are making their way into some phones. While there’s no reason at the current moment to believe we will see quantum technology shrunk small and cheap enough to show up in consumer phones, if hypothetically that was the case, I don’t see why consumers wouldn’t want it.
I am sure clever software developers would figure out how to make use of them if they were available like that. They likely will not be available like that any time in the near future, if ever, but assuming they are, there would probably be a lot of interesting use cases for them that have not even been thought of yet. They will likely remain something largely used by businesses but in my view it will be mostly because of practical concerns. The benefits of them won’t outweigh the cost anytime soon.
bunchberry@lemmy.worldto Technology@lemmy.world•Regarding this picture, where do you think quantum computers lie and why?English11·11 个月前Uh… one of those algorithms in your list is literally for speeding up linear algebra. Do you think just because it sounds technical it’s “businessy”? All modern technology is technical, that’s what technology is. It would be like someone saying, “GPUs would be useless to regular people because all they mainly do is speed up matrix multiplication. Who cares about that except for businesses?” Many of these algorithms here offer potential speedup for linear algebra operations. That is the basis of both graphics and AI. One of those algorithms is even for machine learning in that list. There are various algorithms for potentially speeding up matrix multiplication in the linear. It’s huge for regular consumers… assuming the technology could ever progress to come to regular consumers.
bunchberry@lemmy.worldto Technology@lemmy.world•Philosopher tries to convince ChatGPT that it's consciousEnglish1·11 个月前A person who would state they fully understand quantum mechanics is the last person i would trust to have any understanding of it.
I find this sentiment can lead to devolving into quantum woo and mysticism. If you think anyone trying to tell you quantum mechanics can be made sense of rationally must be wrong, then you implicitly are suggesting that quantum mechanics is something that cannot be made sense of, and thus it logically follows that people who are speaking in a way that does not make sense and have no expertise in the subject so they do not even claim to make sense are the more reliable sources.
It’s really a sentiment I am not a fan of. When we encounter difficult problems that seem mysterious to us, we should treat the mystery as an opportunity to learn. It is very enjoyable, in my view, to read all the different views people put forward to try and make sense of quantum mechanics, to understand it, and then to contemplate on what they have to offer. To me, the joy of a mystery is not to revel in the mystery, but to search for solutions for it, and I will say the academic literature is filled with pretty good accounts of QM these days. It’s been around for a century, a lot of ideas are very developed.
I also would not take the game Outer Wilds that seriously. It plays into the myth that quantum effects depend upon whether or not you are “looking,” which is simply not the case and largely a myth. You end up with very bizarre and misleading results from this, for example, in the part where you land on the quantum moon and have to look at the picture of it for it to not disappear because your vision is obscured by fog. This makes no sense in light of real physics because the fog is still part of the moon and your ship is still interacting with the fog, so there is no reason it should hop to somewhere else.
Now quantum science isn’t exactly philosophy, ive always been interested in philosophy but its by studying quantum mechanics, inspired by that game that i learned about the mechanic of emerging properties. I think on a video about the dual slit experiment.
The double-slit experiment is a great example of something often misunderstood as somehow evidence observation plays some fundamental role in quantum mechanics. Yes, if you observe the path the two particles take through the slits, the interference pattern disappears. Yet, you can also trivially prove in a few line of calculation that if the particle interacts with a single other particle when it passes through the two slits then it would also lead to a destruction of the interference effects.
You model this by computing what is called a density matrix for both the particle going through the two slits and the particle it interacts with, and then you do what is called a partial trace whereby you “trace out” the particle it interacts with giving you a reduced density matrix of only the particle that passes through the two slits, and you find as a result of interacting with another particle its coherence terms would reduce to zero, i.e. it would decohere and thus lose the ability to interfere with itself.
If a single particle interaction can do this, then it is not surprising it interacting with a whole measuring device can do this. It has nothing to do with humans looking at it.
At that point i did not yet know that emergence was already a known topic in philosophy just quantum science, because i still tried to avoid external influences but it really was the breakthrough I needed and i have gained many new insights from this knowledge since.
Eh, you should be reading books and papers in the literature if you are serious about this topic. I agree that a lot of philosophy out there is bad so sometimes external influences can be negative, but the solution to that shouldn’t be to entirely avoid reading anything at all, but to dig through the trash to find the hidden gems.
My views when it comes to philosophy are pretty fringe as most academics believe the human brain can transcend reality and I reject this notion, and I find most philosophy falls right into place if you reject this notion. However, because my views are a bit fringe, I do find most philosophical literature out there unhelpful, but I don’t entirely not engage with it. I have found plenty of philosophers and physicists who have significantly helped develop my views, such as Jocelyn Benoist, Carlo Rovelli, Francois-Igor Pris, and Alexander Bogdanov.
bunchberry@lemmy.worldto Technology@lemmy.world•Meta addresses AI hallucination as chatbot says Trump shooting didn’t happenEnglish1·11 个月前This is why many philosophers came to criticize metaphysical logic in the 1800s, viewing it as dealing with absolutes when reality does not actually exist in absolutes, stating that we need some other logical system which could deal with the “fuzziness” of reality more accurately. That was the origin of the notion of dialectical logic from philosophers like Hegel and Engels, which caught on with some popularity in the east but then was mostly forgotten in the west outside of some fringe sections of academia. Even long prior to Bell’s theorem, the physicist Dmitry Blokhintsev, who adhered to this dialectical materialist mode of thought, wrote a whole book on quantum mechanics where the first part he discusses the need to abandon the false illusion of the rigidity and concreteness of reality and shows how this is an illusion even in the classical sciences where everything has uncertainty, all predictions eventually break down, nothing is never possible to actually fully separate something from its environment. These kinds of views heavily influenced the contemporary physicist Carlo Rovelli as well.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•If you could ask one question and get a 100% true answer, what would it be and why?1·11 个月前And as any modern physicist will tell you: most of reality is indeed invisible to us. Most of the universe is seemingly comprised of an unknown substance, and filled with an unknown energy.
How can we possibly know this unless it was made through an observation?
Most of the universe that we can see more directly follows rules that are unintuitive and uses processes we can’t see. Not only can’t we see them, our own physics tells is it is literally impossible to measure all of them consistently.
That’s a hidden variable theory, presuming that systems really have all these values and we just can’t measure them all consistently due to some sort of practical limitation but still believing that they’re there. Hidden variable theories aren’t compatible with the known laws of physics. The values of the observables which become indefinite simply cease to have existence at all, not that they are there but we can’t observe them.
But subjective consciousness and qualia fit nowhere in our modern model of physics.
How so? What is “consciousness”? Why do you think objects of qualia are special over any other kind of object?
I don’t think it’s impossible to explain consciousness.
You haven’t even established what it is you’re trying to explain or why you think there is some difficulty to explain it.
We don’t even fully understand what the question is really asking. It sidesteps our current model of physics.
So, you don’t even know what you’re asking but you’re sure that it’s not compatible with the currently known laws of physics?
I don’t subscribe to Nagel’s belief that it is impossible to solve, but I do understand how the points he raises are legitimate points that illustrate how consciousness does not fit into our current scientific model of the universe.
But how?! You are just repeating the claim over and over again when the point of my comment is that the claim itself is not justified. You have not established why there is a “hard problem” at all but just continually repeat that there is.
If I had to choose anyone I’d say my thoughts on the subject are closest to Roger Penrose’s line of thinking, with a dash of David Chalmers.
Meaningless.
I think if anyone doesn’t see why consciousness is “hard” then there are two possibilities: 1) they haven’t understood the question and its scientific ramifications 2) they’re not conscious.
You literally do not understand the topic at hand based on your own words. Not only can you not actually explain why you think there is a “hard problem” at all, but you said yourself you don’t even know what question you’re asking with this problem. Turning around and then claiming everyone who doesn’t agree with you is just some ignoramus who doesn’t understand then is comically ridiculous, and also further implying people who don’t agree with you may not even be conscious.
Seriously, that’s just f’d up. What the hell is wrong with you? Maybe you are so convinced of this bizarre notion you can’t even explain yourself because you dehumanize everyone who disagrees with you and never take into consideration other ideas.
Reading books on natural philosophy. By that I mean, not mathematics of the physics itself, but what do the mathematics actually tell us about the natural world, how to interpret it and think about it, on a more philosophical level. Not a topic I really talk to many people irl on because most people don’t even know what the philosophical problems around this topic. I mean, I’d need a whole whiteboard just to walk someone through Bell’s theorem to even give them an explanation to why it is interesting in the first place. There is too much of a barrier of entry for casual conversation.
You would think since natural philosophy involves physics that it would not be niche because there are a lot of physicists, but most don’t care about the topic either. If you can plug in the numbers and get the right predictions, then surely that’s sufficient, right? Who cares about what the mathematics actually means? It’s a fair mindset to have, perfectly understandable and valid, but not part of my niche interests, so I just read tons and tons and tons of books and papers regarding a topic which hardly anyone cares. It is very interesting to read like the Einstein-Bohr debates, or Schrodinger for example trying to salvage continuity viewing a loss of continuity as a breakdown in classical notion of causality, or some of the contemporary discussions on the subject such as Carlo Rovelli’s relational quantum mechanics or Francois-Igor Pris’ contextual realist interpretation. Things like that.
It doesn’t even seem to be that popular of a topic among philosophers, because most don’t want to take the time to learn the math behind something like Bell’s theorem (it’s honestly not that hard, just a bit of linear algebra). So as a topic it’s pretty niche but I have a weird autistic obsession over it for some reason. Reading books and papers on these debates contributes nothing at all practically beneficial to my life and there isn’t a single person I know outside of online contacts who even knows wtf I’m talking about but I still find it fascinating for some reason.
bunchberry@lemmy.worldto Ask Lemmy@lemmy.world•If you could ask one question and get a 100% true answer, what would it be and why?1·1 年前Why do you think consciousness remains known as the “hard problem”, and still a considered contentious mystery to modern science, if your simplistic ideas can so easily explain it?
You people really need to stop pretending like because one guy published a paper calling it the “hard problem” that it’s somehow a deep impossible to solve scientific question. It’s just intellectual dishonesty, trying to paint it as if it’s equivalent to solving the problem of making nuclear fusion work or something.
It’s not. And yes, philosophy is full of idiots who never justify any of their premises. David Chalmers in his paper where he calls it the “hard problem” quotes Thomas Nagel’s paper as “proof” that experience is something subjective, and then just goes forward with his argument as if it’s “proven,” but Nagel’s paper is complete garbage, and so nothing Chalmers argues beyond that holds any water, but is just something a lot of philosophers blindly accept even though it is nonsensical.
Nagel claims that the physical sciences don’t incorporate point-of-view, and that therefore point-of-view must be a unique property of mammals, and that experience is point-of-view dependent, so experience too must come from mammals, and therefore science has to explain the origin of experience.
But his paper was wildly outdated when he wrote it. By then, we already had general relativity for decades, which is a heavily point-of-view dependent theory as there is no absolute space or time but its properties depend upon your point of view. Relational quantum mechanics also interprets quantum mechanics in a way that gets rid of all the weirdness and makes it incredibly intuitive and simple just with the singular assumption that the properties of particles depends upon point-of-view not that much different than general relativity with the nature of space and time, and so there is no absolute state of a system anymore.
Both general relativity and relational quantum mechanics not only treat reality as point-of-view dependent but tie itself back directly to experience: they tell you what you actually expect to observe in measurements. In quantum mechanics they are literally called observables, entities identifiable by their experiential properties.
Nagel is just an example of am armchair philosopher who does not engage with the sciences so he thinks they are all still Newtonian with some sort of absolute world independent of point-of-view. If the natural world is point-of-view dependent all the way down, then none of Nagel’s arguments follow. There is no reason to believe point-of-view is unique to mammals, and then there is further no reason to think the point-of-view dependence of experience makes it inherently mammalian, and thus there is no reason to call experience “subjective.”
Although I prefer the term “context” rather than “point-of-view” as it is more clear what it means, but it means the same thing. The physical world is just point-of-view dependent all the way down, or that is to say, context-dependent. We just so happen to be objects and thus like any other, exist in a particular context, and thus experience reality from that context. Our experiences are not created by our brains, experience is just objective reality from the context we occupy. What our brain does is think about and reflect upon experience (reality). It formulates experience into concepts like “red,” “tree,” “atom,” etc. But it does not create experience.
The entire “hard” problem is based on a faulty premise based on science that was outdated when it was written.
If experience just is reality from a particular context then it makes no sense to ask to “derive” it as Chalmers and Nagel have done. You cannot derive reality, you describe it. Reality just is what it is, it just exists. Humans describe reality with their scientific theories, but their theories cannot create reality. That doesn’t even make sense. All modern “theories of consciousness” are just nonsense as they all are based on the false premise that experience is not reality but some illusion created by the mammalian brain and that “true” reality is some invisible metaphysical entity that lies beyond all possible experience, and thus they demand we somehow need a scientific theory to show how this invisible reality gives rise to the visible realm of experience. The premise is just silly. Reality is not invisible. That is the nonsensical point of view.
Interesting you get downvoted for this when I mocked someone for saying the opposite who claimed that $0.5m was some enormous amount of money we shouldn’t be wasting, and I simply pointed out that we waste literally billions around the world on endless wars killing random people for now reason, so it is silly to come after small bean quantum computing if budgeting is your actual concern. People seemed to really hate me for saying that, or maybe it was because they just actually like wasting moneys on bombs to drop on children and so they want to cut everything but that.